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Abstract: In this paper, we derive sufficient and necessary conditions for existence of hard limits
in interconnected networks of autocatalytic pathways. The existing hard limits are characterized
as a lower bound on a performance measure (L2-norm of an output signal). We show that
underlying digraph of the network plays an important role in emergence of such hard limits.
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1. INTRODUCTION

One of the fundamental challenges in analysis and syn-
thesis of interconnected networks of dynamical systems is
to exploit structural properties of the underlying networks
and characterize their existing hard limits and fundamen-
tal tradeoffs. In this paper, we consider an important
class of interconnected networks of dynamical systems, so
called autocatalytic networks. As critical as this class of
dynamical networks are to our lives and diverse sectors
of our society, we have little rigorous knowledge when
it comes to understanding their structure, dynamics and
holistic behaviors. We aim to develop underpinning design
principles to synthesize hard-limit-free interconnected dy-
namical networks. This will enable us to build robust-by-
design interconnected dynamical networks.

The issue of hard limits and fundamental limitations in
control system design lies at the very core of feedback the-
ory since it reveals what is achievable, and conversely what
is not achievable, for instance see Seron et al. (1997); Doyle
et al. (1992). The recent interest in understanding funda-
mental limitations of feedback in complex interconnected
dynamical networks from biological systems and physics
to engineering and economics has created a paradigm shift
in the way systems are analyzed, designed, and built. For
example, only to name a few, Middleton and Braslavsky
(2010) gives conditions for string instability in an array of
linear time-invariant autonomous vehicles with communi-
cation constraints, Vinay (2007) provides a lower bound
on the achievable quality of disturbance rejection using
a decentralized controller for stable discrete time linear
systems with time delays, Padmasola and Elia (2006) stud-
ies the performance of spatially invariant plants intercon-
nected through a static network, and Bamieh et al. (2012)
characterizes a fundamental limitation in distributed con-
sensus and vehicular formation control problems and show
that in low spatial dimensions, local feedback is unable
to regulate large-scale disturbances, but it can in higher
spatial dimensions.

Most of the above cited research on fundamental limi-
tations of feedback in interconnected dynamical systems
has been focused on networks with linear time-invariant
subsystems. The motivation of this research comes from
a recent work presented in Chandra et al. (2011) where
it is shown that glycolysis oscillation can be an indirect
effect of fundamental tradeoffs in this system. The results
of this work is based on a linearized model of a two-
state model of glycolysis pathway and tradeoffs are stated
using Bode’s results. Our network models are built upon
models presented in Chandra et al. (2011). However, our
proposed approach to characterize hard limits in autocat-
alytic networks is different in spirit from that of Chandra
et al. (2011) and uses higher dimensional nonlinear models
of the pathways. We interpret fundamental limitations of
feedback by using hard limits (lower bounds) on L2-norm
of the output of the system (see Motee et al. (2010); Seron
et al. (1999) for more details). Our approach opens up new
ways to define general autocatalytic dynamical network
models.

We discuss minimal autocatalytic pathway models in Sec-
tion 3 and show that such minimal autocatalytic models
capture essential features of a general autocatalytic feed-
back, i.e., existence of autocatalytic feedback may impose
severe tradeoffs between fragility and net production of
the network. For such minimal models, we characterize
existing hard limits and their corresponding fundamental
tradeoffs. In Section 5, we propose models for intercon-
nected networks of autocatalytic pathways where arbitrary
number of autocatalytic pathways can form an intercon-
nected dynamical network with an arbitrary interconnec-
tion topology. In Section 6, several sufficient and necessary
conditions have been derived for existence of hard limits in
a given interconnected network of autocatalytic pathways.
More importantly, it is shown that hard limits emerge
if the underlying digraph of the network exhibits some
specific structural properties.



In this paper, we provide first steps towards develop-
ment of a mathematical methodology to characterize hard
limits in interconnected networks of nonlinear dynamical
systems. Tools that are commonly used in optimization
as well as in systems and control theory can provide a
good foundation for moving toward such an integrated
theory. We illustrate the ways in which these ideas have
been used to provide a fresh perspective on problems in
biology and demonstrate how this new approach allows
new progress towards long-standing problems in biology
and engineering.

2. NOTATIONS AND PRELIMINARY DEFINITIONS

The following notations and definitions will be used
throughout the paper. For a given n × n matrix A, we
denote its eigenvalues by λi

(
A
)

and its singular values by
σi(A) for all i = 1, . . . , n and sort its singular values in de-
scending order as σ1(A) ≥ σ2(A) ≥ · · · ≥ σn(A). We write
A ≥ B (respectively, A > B) if all entries of the matrix
A − B are nonnegative (respectively, positive). A matrix
is called anti-stable if all its eigenvalues have positive real
parts. The class of Zn matrices are those matrices whose
off-diagonal entries are less than or equal to zero, i.e., a
matrix Z = [zij ] in Zn satisfies zij ≤ 0 if i 6= j. A
matrix A is called an M -matrix if A ∈ Zn and A is anti-
stable. Whenever A is invertible and A−1 is an M -matrix,
A is called inverse M -matrix.

3. MINIMAL AUTOCATALYTIC PATHWAY MODEL

The first step is development of a biologically motivated
minimal model of autocatalytic dynamical networks that
exhibits fundamental tradeoffs caused by autocatalysis.
Analysis of robustness and efficiency tradeoffs for such
canonical model provides a deep understanding of struc-
tural properties of autocatalytic networks as well as illus-
trates theoretical underpinning principles to design effi-
cient and robust networks of dynamical systems.

We consider autocatalysis is glycolysis pathway. The cen-
tral role of glycolysis is to consume glucose and produce
adenosine triphosphate (ATP), the cell’s energy currency.
Similar to many other engineered systems whose machin-
ery runs on its own energy product, the glycolysis reac-
tion is autocatalytic. The ATP molecule contains three
phosphate groups and energy is stored in the bonds be-
tween these phosphate groups. Two molecules of ATP are
consumed in the early steps (hexokinase, phosphofructok-
inase/PFK) and four ATPs are generated as pyruvate is
produced. PFK is also regulated such that it is activated
when the adenosine monophosphate (AMP)/ATP ratio is
low; hence it is inhibited by high cellular ATP concen-
tration. This pattern of product inhibition is common in
metabolic pathways.

Experimental observations in Saccharomyces cerevisiae
suggest that there are two synchronized pools of oscillat-
ing metabolites. Metabolites upstream and downstream
of phosphofructokinase (PFK) have 180 degrees phase
difference, suggesting that a two-dimensional model in-
corporating PFK dynamics might capture some aspects
of system dynamics Betz and Chance (1965), and in-
deed, such simplified models qualitatively reproduce the

experimental behavior Goldbete (1996); Sel’kov (1975).
We consider a minimal system with three reactions with a
single intermediate metabolite reaction (1)-(2), for which
we can identify specific mechanisms both necessary and
sufficient for oscillations,

s+ αy
f−−→ x1

kx−−−→ (α+ β)y + x′1 (1)

y
ky−−−→∅ (2)

In the first reaction, s is some precursor and source of
energy for the pathway with no dynamics associated, y
denotes the product of the pathway (ATP), x1 is inter-
mediate metabolites, x′1 is one of the by-products of the
second biochemical reaction, ∅ is a null state, α is the
number of y molecules that are invested in the pathway,

and α+β is the number of y molecules produced. A
k−−→ B

denotes a chemical reaction that converts the chemical
species A to the chemical species B at rate k. We choose

f(y) = V yq

1+γyh
, which is consistent with biological intu-

ition and experimental data in the case of the glycolysis
pathway (see Banuelos et al. (1977); Dano et al. (2006)
for more details), where V > 0 depends on s, param-
eter q > 0 captures the strength of autocatalysis, and
γ, h > 0 capture the strength of inhibition. The function
f is not monotone and captures the interplay between the
autocatalysis and inhibition. A set of ordinary differential
equations that govern the changes in concentrations x1
and y can be written as

ẋ1 =−kxx1 +
V yq

1 + γyh
(3)

ẏ =−kyy + (α+ β)kxx1 −
αV yq

1 + γyh
, (4)

for x1 ≥ 0 and y ≥ 0. To highlight fundamental tradeoffs
due to autocatalytic structure of the system, we normalize
the concentration such that steady states are ȳ = 1 and

x̄ =
ky
βkx

.

Depending on values of parameters q and h, the system
can have another equilibirum point which is unstable when
(x̄, ȳ) is stable. In glycolysis model (3)-(4), expression

1
1+γyh

can be interpreted as the regulatory feedback con-

trol employed by nature which captures inhibition of the
catalyzing enzyme. Hence, we can derive a control system
model for glycolysis as follows

ẋ=−kxx+ V yqu (5)

ẏ =−kyy + (α+ β)kxx− αV yqu, (6)

where u is the control input. Our primary motivation
behind developing and analyzing such control system
models for metabolic pathways is to rigorously prove that
the tradeoffs in such models are truly unavoidable and
independent of control mechanisms (linear or nonlinear)
used to regulate such pathways. The following results
assert that essential tradeoffs depend only on autocatalytic
structure of the network.

In Motee et al. (2010), it is shown that there exists a hard
limit on the best achievable ideal performance of system
(5)-(6) which is characterized as the following inequality∫ ∞

0

(y(t;u0)− ȳ)2dt ≥ H(x(0), y(0);α, β), (7)



in which y(t;u0) is the output of the system with respect
to a stabilizing control input u0 and

H(x(0), y(0);α, β) =
α3βkx

(αky + βkx)2

(
z(0)− z∗

)2
, (8)

and z(0) = x(0) + 1
α y(0) and z̄ = x̄ + 1

α ȳ. Now, we can
define rate of profit ρ as the ratio of β (net production of
ATP molecules) to α (number of ATP molecules invested

in the pathway), i.e., ρ = β
α . The hard limit function (8)

can be rewritten as

H(x(0), y(0);β, ρ) =
β2kx

ρ(ky + ρkx)2

(
z(0)− z∗

)2
(9)

A fundamental tradeoff between fragility and net produc-
tion of the pathway emerges here. When we keep the
rate of profit ρ fixed, a fundamental tradeoff between net
production of ATP molecules and transient behavior of
the system emerges as follows: increasing β can result
in undesirable transient behavior (e.g., large–magnitude
oscillation in the output of the system) and can increase
fragility of the network to small disturbances. For instance,
if the level of ATP drops below some threshold, there will
not be sufficient supply of ATP for different pathways in
the cell and that can result to cell death.

The minimal autocatalytic model (5)-(6) captures funda-
mental features of a general autocatalytic feedback, i.e.,
existence of autocatalytic feedback may impose severe
tradeoffs between fragility and net production of the net-
work. In this paper, we consider an arbitrary intercon-
nection of several autocatalytic pathways with minimal
representations as shown in Fig. 1.

In this model, the by-product of a pathways serves as an
external input for several other pathways. Hence, oscilla-
tions in one pathway will affect the subsequence ones. This
interconnection topology appears in various pathways in
cell as well as engineered (e.g., an interconnected network
of microgrids) and financial networks. Our objective is
to study under what conditions (in terms of system pa-
rameters) tradeoffs in one pathway will affect the rest of
the network and result in severe situations. This model
serves as a perfect deterministic setup to study effects of
hard limits in various real-world networks such as power
grids, economic, and financial networks. For instance, if
one pathway gets greedy to earn more profit, whether
that will make other pathways more fragile to external
disturbances.

4. CHARACTERIZATION OF HARD LIMITS

Our approach to quantify hard limits for a stabilizable and
detectable system

ẋ= f(x) + g(x) u, x ∈ Rn, u ∈ Rm (10)

y = h(x) (11)

with initial condition x(0) = x0, is based on formulating
and solving the corresponding cheap optimal control prob-
lem which consists of finding a stabilizing state feedback
control which minimizes the functional

Jε(x0;u) =
1

2

∫ ∞
0

(
yT y + ε2uTu

)
dt (12)

when ε > 0 is small. As ε → 0, the optimal value J∗ε (x0)
tends to J∗0 (x0), the ideal performance. It is well-known

(e.g., see Sepulchre et al. (1997), page 91) that this prob-
lem has a solution if there exists a positive semidefinite
optimal value function which satisfies the corresponding
Hamilton–Jacobi-Bellman equation (HJBE). The interest-
ing fact is that J∗0 (x0) the ideal performance is indeed
a hard limit function for system (10)-(11). It is known
that the ideal performance is the optimal value of the
minimum energy problem for the zero-dynamics subsystem
of the system Seron et al. (1999). The ideal performance
(hard limit function) is zero if and only if the system has
an asymptotically stable zero-dynamics subsystem Seron
et al. (1999).

5. INTERCONNECTED NETWORKS OF PATHWAYS

We consider an interconnection of n autocatalytic path-
ways. The model of each pathway consists of three bio-
chemical reactions shown as follows

αi1y1 + · · ·+ αinyn
fi−−→ xi

kxi−−−→ (αi + βi)yi + x′i (13)

yi
kyi−−−→ ∅ (14)

where αi = α1i+· · ·+αni. In this model, αij is the number
of yi molecules that are invested in the pathway j and
αi+βi is the number of yi molecules produced in pathway
i. For simplicity of notations, we use notation x to denote
the chemical species x as well as its concentration.

Assumption 1. In the interconnected network of path-
ways, all biochemical reactions occur instantaneously and
simultaneously.

The corresponding stoichiometry matrix to (13)-(14) is a
2n×3n matrix and denoted by S. Each row corresponds to
a species, and each column corresponds to a reaction. The
stoichiometry matrix indicates which species and reactions
are involved as reactants and products. Reactants are
represented in the matrix with their stoichiometric value
at the appropriate location; row of species and column of
reaction. Reactants appear as negative values. Products
are represented in the matrix with their stoichiometric
value at the appropriate location; row of species and
column of reaction. Products appear as positive values. All
other locations in the matrix contain a zero. The dynamics
of interconnected network of autocatalytic pathways (13)-
(14) is given by [

ẋ
ẏ

]
= S

[
x
y
fy,u

]
(15)

in which x = [x1, x2, . . . , xn]T , y = [y1, y2, . . . , yn]T , u =
[u1, u2, . . . , un]T , fy,u = [f1(y, u1), · · · , fn(y, un)]T , and

S :=

[
−A1 B1 C1

A2 −B2 −C2

]
(16)

where

A1 = diag
[
kx1

, . . . , kxn

]
, B1 = 0n×n, C1 = In×n, (17)

A2 = diag
[
(β1 + α1)kx1

, . . . , (βn + αn)kxn

]
, (18)

B2 = diag
[
ky1 , . . . , kyn

]
, C2 =

[
αij
]T
, (19)

and the reaction rate functions are assumed to be
fi(y, ui) = Ki

∏n
j=1 y

αij

j ui. We should highlight that ma-
trix C2 is the adjacency matrix of the corresponding under-
lying weighted digraph G of the interconnected network of



Fig. 1. An schematic diagram of autocatalytic pathway i
defined by (13)-(14). The variables xi and yi denote
internal states of the pathway.

autocatalytic pathways (13)-(14). Fig. 1 illustrates details
of the interconnection graph of the entire network in node
level. Each autocatalytic pathway is treated as a node in
this representation.

In order to characterize fundamental tradeoffs of system
(15), we need to cast the system in a canonical form so
that the zero-dynamics of the system appears in the new
representation. Let us introduce new set of variables by
z = x+Qy. We assume that matrix C2 is invertible. Then,
the dynamics of the system with respect to y and z is given
by [

ż
ẏ

]
=

[
A0 B0 0
Ā2 B̄2 C̄2

] [ z
y
fy,u

]
(20)

in which

A0 = −A1 +QA2, (21)

B0 = A1Q−QA2Q−QB2. (22)

where Q = C−12 . Suppose that the equilibrium of interest
for the vector of outputs is ȳ ∈ Rn++ (i.e., belongs to the
strictly positive orthant of Rn). Then, the equilibrium of
interest for the remaining state and input variables are
given by

(A2 − C2A1)x̄ = B2ȳ, (23)

ūi =
kxi x̄i

Ki

∏n
j=1 ȳ

αij

j

. (24)

We define matrix Ā0 := A2 − C2A1. The following lem-
mas characterize necessary and sufficient conditions under
which meaningful equilibria exist, i.e., x̄ ≥ 0 and ȳ > 0 for
all kyi ≥ 0.

Lemma 2. x̄ ≥ 0 for all kyi ≥ 0 if and only if Ā0 is an
M -matrix.

Proof. From the definition of matrices A1, A2, C2, it is
straightforward to verify that Ā0 ∈ Zn. It follows that
matrix Ā−10 is nonnegative if and only if Ā0 is anti-stable
(see page 115 of Horn and Johnson (1994)). �
Lemma 3. The matrix Ā0 is an M -matrix if B :=
diag[β1, . . . , βn] > 0.

Proof. Consider the following equation.

Ā0 = B + (A− C2) = B + L, (25)

where A := diag[α1, · · · , αn] and L := A − C2. By Gers-
gorins theorem, the real part of each nonzero eigenvalue of

L is positive. Thus, L is a singular M -matrix. Moreover, B
is a positive definite matrix. Thus, according to Theorem.
2.5.4 of Horn and Johnson (1994), Ā0 = B + L is an M -
matrix. �

The result of Lemma 3 implies that if B > 0, i.e., the
net production of all pathways are nonzero, then system
(15) has meaningful fixed points for all kyi ≥ 0. The
following theorem states that under what conditions there
are hard limits on performance of interconnected network
of autocatalytic pathways (13)-(14).

Theorem 4. Suppose that A0 is anti-stable and the equi-
librium of interest is given by (23)-(24). Then, L2-norm
of the output of the system (15) for all ky ≥ 0 is lower
bounded by a constant which only depends on the under-
lying structure of the system, i.e.,∫ ∞

0

(y(t;u0)− ȳ)T (y(t;u0)− ȳ) dt ≥ z̄T0 P0z̄0, (26)

where z0 = (x(0) − x̄) + Q(y(0) − ȳ), u0 is an arbitrary
stabilizing feedback control law for system (15), y(t;u0) is
the output of the system with respect to u0, and P0 > 0
is the unique positive definite solution of the following
algebraic Riccati equation

AT
0 P0 + P0A0 = P0B0B

T
0 P0. (27)

Proof. The proof can be easily adjusted from the main
theorem of Seron et al. (1999). �

6. EXISTENCE OF HARD LIMITS

In this section, we will state necessary and sufficient con-
ditions for the existence of hard limits in terms of charac-
teristics of the underlying digraph G of the interconnected
network.

Lemma 5. Suppose that all kxi
are nonzero and equal.

Then, A0 is anti-stable if
n∑
j=1

αij −
n∑
j=1

αji < βi. (28)

Proof. First, assume that all kxi
are nonzero and equal

to kx. Then, from (28) and Gersgorins theorem, we obtain
that Re

{
λ
(
A−12 C2

)}
< k−1x . As a consequence, we have

that Re
{
λ
(
C−12 A2

)}
> kx. Now, by using (17), (18), (21)

and Re
{
λ
(
C−12 A2

)}
> kx, it follows that A0 is anti-stable.

�

We recall that all M -matrices are anti-stable. In the
following lemma, we relate the structure of the underlying
digraph G of the network to structural properties of A0.

Lemma 6. The matrix A0 is an M -matrix if and only if
C2 is an inverse M -matrix.

Proof. (⇐) First, we assume that C2 is an inverse M -
matrix. Then, by using (21) and the fact that C2 is an
inverse M -matrix, we obtain that A0 ∈ Zn. Now, from
(21) and definition of Ā0 we get that A0 = C−12 Ā0. Note
that, C−12 and Ā0 are M -matrix and A0 ∈ Zn. Hence, A0

is an M -matrix (see page 127 of Horn and Johnson (1994)
for more details).

(⇒) According to (21) we have

C−12 = (A0 +A1)A−12 . (29)



Fig. 2. Cascade interconnection of autocatalytic pathways.

A0 is an M -matrix and A1 is a positive diagonal matrix.
Thus, matrix A0 + A1 is an M -matrix. Also, the matrix
A−12 is a positive diagonal matrix. Therefore, it follows
that matrix C−12 is an M -matrix (see page 127 of Horn
and Johnson (1994) for more details. �

Remark 7. Consider a cascade interconnection of n au-
tocatalytic pathways as shown in Fig. 2. First, by using
lemma 3, we get that Ā0 is an M -matrix. Thus, according
to Lemma 2, this system has meaningful fixed points for
all kyi ≥ 0. Then, by using Lemma 5, we get that the
corresponding matrix A0 of this interconnection topology
is anti-stable. Thus, based on Theorem 4 there exist a hard
limits on performance of this interconnected network.

7. CONCLUSION

The results of this paper show that there is a close
relationship between the existence of hard limits and
the structural properties of the underlying digraph of an
interconnected network of dynamical systems.
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