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Abstract— In this paper, we develop some basic principles
to study autocatalytic networks and exploit their structural
properties in order to characterize their existing hard limits and
essential tradeoffs. In a dynamical system with autocatalytic
structure, the system’s output is necessary to catalyze its own
production. We consider a simplified model of glycolysis as
our motivating example. We study the hard limits of the ideal
performance of such pathways. First, for a simple two-state
model of glycolysis we explicitly derive the hard limit on
the minimum L2-gain disturbance attenuation and the hard
limit of its minimum output energy. Then, we generalize our
results to higher dimensional model of autocatalytic pathways.
Finally, we show that how these resulting hard limits lead to
some fundamental tradeoffs between transient and steady-state
behavior of the network and its net production.

I. INTRODUCTION

The class of dynamical networks with autocatalytic struc-
tures can be found in most of the planet’s cells from bacteria
to human, engineered, and economic systems [1]. In an
interconnected control system with autocatalytic structure,
the system’s product (output) is necessary to power and
catalyze its own production. The destabilizing effects of
such “positive” autocatalytic feedback can be countered by
negative regulatory feedback. There have been some recent
interest to study models of glycolysis pathway which is an
example of an autocatalytic dynamical network in biology
that generates adenosine triphospate (ATP) which is the cell’s
energy currency and is consumed by different mechanisms
in the cell [1], [2]. Other examples of autocatalytic networks
include engineered power grids whose machinery are main-
tained using their own energy product as well as financial
systems which operate based on generating monetary profits
by investing money in the market. Recent results show that
there can be severe theoretical hard limits on the resulting
performance and robustness in autocatalytic dynamical net-
works. It is shown that the consequence of such tradeoffs
stems from the autocatalytic structure of the system [1], [2].

The recent interest in understanding fundamental limi-
tations of feedback in complex interconnected dynamical
networks from biological systems and physics to engineering
and economics has created a paradigm shift in the way
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systems are analyzed, designed, and built. Typical examples
of such complex networks include metabolic pathways [4],
vehicular platoons [5]–[9], arrays of micro-mirrors [10],
micro-cantilevers [11], and smart power grids. These systems
are diverse in their detailed physical behavior, however, they
share an important common feature that all of them consist
of an interconnection of a large number of systems. There
have been some progress in characterization of fundamental
limitations of feedback in this class of systems. For example,
only to name a few, reference [12] gives conditions for string
instability in an array of linear time-invariant autonomous
vehicles with communication constraints, [13] provides a
lower bound on the achievable quality of disturbance rejec-
tion using a decentralized controller for stable discrete time
linear systems with time delays, [14] studies the performance
of spatially invariant plants interconnected through a static
network.

Most of the above cited research on fundamental lim-
itations of feedback in interconnected dynamical systems
have been focused on networks with linear time-invariant
dynamics. The main motivation of this paper stems from a
recent work presented in [1] which shows that glycolysis
oscillation can be an indirect effect of fundamental tradeoffs
in this system. The results of this work is based on a
linearized model of a two-state model of glycolysis pathway
and tradeoffs are stated using Bode’s results. In this paper,
our approach to characterize hard limits is essentially dif-
ferent in the sense that it uses higher dimensional nonlinear
models of the pathway. We interpret fundamental limitations
of feedback by using hard limits (lower bounds) on L2-
gain disturbance attenuation of the system [15]–[17], and
L2-norm of the output of the system [2], [18].

In this paper, our goal is to build upon our previous results
[2], [3] and develop methods to characterize hard limits
on performance of autocatalytic pathways. First, we study
the properties of such pathways through a two-state model,
which obtained by lumping all the intermediate reactions
into a single intermediate reaction (Fig. 1. A). Then, we
generalize our results to autocatalytic pathways, which are
composed of a chain of enzymatically catalyzed intermediate
reactions (Fig. 1. B). We show that due to the existence of
autocatalysis in the system (which is necessary for survival
of the pathway), a fundamental tradeoff between fragility
and net product of the pathway emerges. Also, we show that
as the number of intermediate reactions grows, the price for
performance increases.



II. CHARACTERIZATION OF HARD LIMITS

In this paper, we use two different methods to quantify
hard limits for a stabilizable and detectable system of the
following form,

ẋ = f(x) + g(x)u+ p(x)δ, x ∈ R
n, u ∈ R

m, (1)

y = h(x), (2)

where x ∈ Rn is the state, u(t) ∈ R the control input,
and δ ∈ R the exogenous disturbance input of the system.
We quantify hard limits (in the form of lower bounds) on
measures of robustness and performance by considering L2-
gain disturbance attenuation and L2-norm of the output of
the system.

A. Hard limits on disturbance attenuation

In order to quantify lower bounds on the best achiev-
able robustness measure for (1)-(2), we need to solve the
corresponding regional state feedback L2-gain disturbance
attenuation problem with guaranteed stability. This problem
consists of determining a control law u = u(x) such that
the closed-loop system has the following properties. First,
the zero equilibrium of the system (1)-(2) with δ(t) = 0, for
all t ≥ 0, is asymptotically stable with region of attraction
containing Ω (an open set containing the origin in Rn).
Second, for every δ ∈ L2(0, T ) such that the trajectories
of the system remain in Ω , the L2-gain of the system (1)-

(2) from δ to y, is less than or equal to γ, i.e.,
∫ T

0 |y(t)|2dt ≤

γ2
∫ T

0 |δ(t)|2dt, for all T ≥ 0 and zero initial state.
It is well-known that there exists a solution to the static

state feedback L2-gain disturbance attenuation problem with
stability, in some neighborhood of the origin, if there exists
a smooth positive definite solution of the corresponding
Hamilton-Jacobi inequality (see [16], [17] for more details).

B. Hard limits on output energy

We characterize fundamental limitations of feedback for
system (1)-(2) with initial condition x(0) = x0 and zero
external disturbances (i.e., δ(t) = 0) by considering the
corresponding cheap optimal control problem. This case
consists of finding a stabilizing state feedback control which
minimizes the functional

Jε(x0;u) =
1

2

∫ ∞

0

[

yT y + ε2uTu
]

dt, (3)

when ε is a small positive number. As ε → 0, the optimal
value J∗

ε (x0) tends to J∗
0 (x0), the ideal performance of the

system. It is well-known (e.g., see [22], page 91) that this
problem has a solution if there exists a positive semidefinite
optimal value function which satisfies the corresponding
Hamilton–Jacobi-Bellman equation (HJBE). The interesting
fact is that the ideal performance is indeed a hard limit on
performance of system (1)-(2). It is known that the ideal
performance is the optimal value of the minimum energy
problem for the zero-dynamics of the system (see [18] for
more details). The ideal performance (hard limit function) is
zero if and only if the system has an asymptotically stable
zero-dynamics subsystem.

III. MINIMAL AUTOCATALYTIC PATHWAY MODEL

We consider autocatalysis mechanism in a glycolysis path-
way. The central role of glycolysis is to consume glucose
and produce adenosine triphosphate (ATP), the cell’s energy
currency. Similar to many other engineered systems whose
machinery runs on its own energy product, the glycoly-
sis reaction is autocatalytic. The ATP molecule contains
three phosphate groups and energy is stored in the bonds
between these phosphate groups. Two molecules of ATP
are consumed in the early steps (hexokinase, phosphofruc-
tokinase/PFK) and four ATPs are generated as pyruvate is
produced. PFK is also regulated such that it is activated
when the adenosine monophosphate (AMP)/ATP ratio is low;
hence it is inhibited by high cellular ATP concentration
[4], [19]. This pattern of product inhibition is common in
metabolic pathways. We refer to [1] for a detailed discussion.

Experimental observations in Saccharomyces cerevisiae
suggest that there are two synchronized pools of oscillating
metabolites [20]. Metabolites upstream and downstream of
phosphofructokinase (PFK) have 180 degrees phase differ-
ence, suggesting that a two-dimensional model incorporating
PFK dynamics might capture some aspects of system dy-
namics [21], and indeed, such simplified models qualitatively
reproduce the experimental behavior [4], [19]. We consider
a minimal system with three reactions (Fig. 1. A) [1], for
which we can identify specific mechanisms both necessary
and sufficient for oscillations,

ẋ =
2ya

1 + y2h
−

2kx

1 + y2g
, (4)

ẏ = −q
2ya

1 + y2h
+ (q + 1)

2kx

1 + y2g
− (1 + δ), (5)

for x ≥ 0 and y ≥ 0. In the first reaction in (Fig. 1. A), PFK
consumes q molecules of y (ATP) with allosteric inhibition
by ATP. In this case, we lump the intermediate metabolites
into one variable, x (see Fig. 1. A). In the second reaction,
pyruvate kinase (PK) produces q + 1 molecules of y for a
net (normalized) production of one unit, which is consumed
in a final reaction modeling the cell’s use of ATP. In the
final reaction the effect of disturbance δ in ATP demand is
considered.

In order to make several comparisons possible, we nor-
malize all concentrations such that unperturbed (δ = 0)
equilibrium point of the systems becomes

y∗ = 1 and x∗ =
1

k
. (6)

In glycolysis model (4)-(5), expression 2
1+y2h can be inter-

preted as the regulatory feedback control employed by nature
which captures inhibition of the catalyzing enzyme. Hence,
we can derive a control system model for glycolysis pathway
[

ẋ
ẏ

]

=

[

1
−q

]

yau+

[

−1
q + 1

]

2kx

1 + y2g
−

[

0
1 + δ

]

, (7)

where u is the control input. Our primary motivation behind
development and analysis of such control system models for
metabolic pathways is to rigorously prove that the tradeoffs
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Fig. 1: (A) Diagram of two-state glycolysis model. (B)
Diagram of glycolysis model with intermediate reactions. q
ATP molecules, along with constant glucose input, produce a
pool of intermediate metabolites, which then produces q+1
ATP molecules.

in such models are truly unavoidable and independent of con-
trol mechanisms (linear or nonlinear) used to regulate such
pathways. The following results assert that essential tradeoffs
depend only on autocatalytic structure of the network.

A. Hard limit on disturbance attenuation

The simplest robust performance requirement for (7) is
that the concentration of y (ATP) remains nearly constant
when there is a small constant disturbance in ATP con-
sumption δ (see [1], [2]). But even temporary ATP depletion
can result in cell death. Therefore, we are interested in a
more complete picture of the transient response to external
disturbances.

We show that there exists a hard limit on the best achiev-
able disturbance attenuation, γ∗, for system (7) such that the
problem of disturbance attenuation with internal stability is
solvable for all γ > γ∗ and not for γ < γ∗,

∫ T

0
(y(t)− y∗)2dt ≤ γ2

∫ T

0
δ2(t)dt, (8)

for all T ≥ 0 and all δ ∈ L2(0, T ) and y(0) = y∗.
The interesting observation is that the optimal disturbance
attenuation γ∗ is indeed a hard limit function on robustness
of system (1)-(2). It is known that for linear systems, optimal
disturbance attenuations can be calculated based on the zero-
dynamics subsystem of the system [18]. The hard limit
function is zero if and only if the disturbance δ does not
influence the unstable part of the zero-dynamics of the
system (as defined in [15] for nonlinear systems).

Theorem 1: There exists a hard limit on the best achiev-
able disturbance attenuation, γ∗, for system (7) such that
the regional state feedback L2-gain disturbance attenuation
problem with guaranteed stability is solvable for all γ > γ∗,
but is not solvable for all γ < γ∗. Moreover, the hard limit
function can be written as

γ∗ ≥ H(q, k, g) =
q

k + gq
. (9)

Proof: First, by introducing a new variable z = x+ 1
q
y,

we can cast the system (7) in the following form

ẏ = −
q + 1

q

2ky

1 + y2g
+ (10)

(q + 1)
2kz

1 + y2g
− qyau− (1 + δ),

ż =
1

q

2kz

1 + y2g
−

1

q2
2ky

1 + y2g
−

1

q
(1 + δ). (11)

The subsystem (11) represents the zero-dynamics of (7).
Then, we rewrite (11) in the following form

˙̄z =
k

q
z̄ −

gq + k

q2
ȳ −

1

q
δ + f̄(z̄, ȳ), (12)

where z̄ = z−z∗ = z− (x∗+ 1
q
y∗), ȳ = y−y∗, f̄(0, 0) = 0

and ‖∂f̄(z̄,ȳ)
∂(z̄,ȳ) ‖ ≤ c|(z̄, ȳ)|, near the origin in R3 for a positive

number c ∈ R. Now, according to Proposition. 6 of [17], we
know that if the system (11) has L2-gain less than γ, then
the linearized system (13) has L2-gain less than γ.

Hence, for obtaining the lower bound for the best achiev-
able L2-gain disturbance attenuation, we just consider the
linearized system (13)

˙̄z =
k

q
z̄ −

gq + k

q2
ȳ −

1

q
δ. (13)

For system (13), the optimal value of γ is given by (see [15],
[23] for more details)

γ∗
L =

q

k + gq
. (14)

Thus, we can conclude that γ∗ ≥ γ∗
L = H(q, k, g) = q

k+gq .

Remark 1: Theorem 1 illustrates a tradeoff between ro-
bustness and efficiency (as measured by complexity and
metabolic overhead). From (9) the glycolysis mechanism is
more robust efficient if k and g are large. On the other
hand, large k requires either a more efficient or a higher
level of enzymes, and large g requires a more complex
allosterically controlled PK enzyme; both would increase the
cells metabolic load. Note that, the obtained hard limit in
Theorem 1 is increasing function with respect to q. It means
that increasing q (more energy investment for the same
return) can result in worse performance. It is important to
note that these results are consistent with results in [1], where
a linearized model with a different performance measure is
used.

B. Hard limit on output energy

In this subsection, we show that there exists a hard limit
on the best achievable ideal performance (output energy) of



system (7). One can see that some minimum output energy
(i.e., ATP) is required to stabilize the unstable zero-dynamics
(11). This output energy represents the energetic cost of the
cell to stabilize it to its steady-state. In the following theorem,
we show that the minimum output energy is lower bounded
by a constant which is only a function of the parameters and
initial conditions of the glycolysis model. This hard limit is
independent of the feedback control strategy used to stabilize
the system.

Theorem 2: Suppose that the equilibrium of interest is
given by (6) and u∗ = 1. Then, there is a hard limit on
the performance measure of the unperturbed (δ = 0) system
(7) in the following sense

∫ ∞

0
(y(t;u0)− ȳ)2 dt ≥

q3

k
z20 + J(z0, q, g), (15)

where z0 = (x(0) − x∗) + 1
q (y(0) − y∗), u0 is an arbi-

trary stabilizing feedback control law for system (7), and
J(0, q, g) = J(z, q, 0) = 0 and |J(z, q, g)| ≤ c|z|3 on an
open set Ω around the origin in R.

Proof: By introduction of a new variable z = x +
1
q y, we rewrite (7) is the canonical form (10)-(11). The
linearization of (10)-(11) is given by

A0 =

[

−k a+ g
(q + 1)k −qa− g(q + 1)

]

, B0 =

[

1
−q

]

.

We denote by π(y, z; ε) the solution of the HJB PDE cor-
responding to the cheap optimal control problem to (7). We
apply the power series method [25], [26] by first expanding
π(y, z; ε) in series as follows

π(y, z; ε) = π[2](y, z; ε) + π[3](y, z; ε) + . . . (16)

in which kth order term in the Taylor series expansion of
π(y, z; ε) is denoted by π[k](y, z; ε). Then (16) is plug into
the corresponding HJB equation of the optimal cheap control
problem. The first term in the series is

π[2](y, z; ε) =
[

y − y∗ z − z∗
]

P (ε)

[

y − y∗

z − z∗

]

,

where P (ε) is the solution of algebraic Riccati equation to
the cheap control problem for the linearized model (A0, B0).
It can be shown that P (ε) can be decomposed in the form
of a series in ε (see [24] for more details)

P (ε) =

[

εP1 εP2

εP2 P0 + εP3

]

+O(ε2).

Since the pole of the zero-dynamics of the linearized model

is located at the k
q , we can verify that P0 = q3

k . Therefore,

it follows that π[2](y, z; ε) = q3

k z20 +O(ε).

Due to space limitations, we eliminate the details of
the proof and only explain the key steps. One can obtain
governing partial differential equations for the higher-order
terms π[k](y, z; ε) for k ≥ 3 by equating the coefficients of
terms with the same order. It can be shown that π[k](y, z) =
π
[k]
0 (z) + επ

[k]
1 (y, z) + O(ε) for all k ≥ 3. Then, by

constructing approximation of the optimal control feedback

by using computed Taylor series terms, one can prove that

π(y, z; ε) → q3

k
z20 + (higher order terms in z0) as ε → 0.

Thus, the ideal performance cost value is q3

k
z20 + J(z0).

Remark 2: Based on Theorems 1 and 2, a fundamental
tradeoff between fragility and net production of the pathway
emerges as follows: increasing q (number of ATP molecules
invested in the pathway), increases fragility of the network
to small disturbances (based on Theorem 1) and it can result
in undesirable transient behavior (based on Theorem 2). For
instance, if the level of ATP drops below some threshold,
there will not be sufficient supply of ATP for different
pathways in the cell and that can result to cell death.

Remark 3: In the case where we have g = 0 i.e., without
ATP feedback on PF, Theorem 2 reduces to the result given
in [2] which provides a hard limit on the best achievable
ideal performance of the system (7) without ATP feedback
on PK.

IV. AUTOCATALYTIC PATHWAYS WITH MULTIPLE

INTERMEDIATE METABOLITE REACTIONS

In this section, we consider autocatalytic pathways with
multiple intermediate metabolite reactions as shown in Fig.
1. B. In Section III, we studied the property of such pathways
with a two-state model (7), which is obtained by lumping all
the intermediate reactions into a single intermediate reaction
(see Fig. 1. A). Our notations are similar to those of the
two-state pathway model (4)-(5). Therefore, we can derive
a control system model for the autocatalytic pathway with
multiple intermediate metabolite reactions as follows

ẋ1 = yau−K1x1,

ẋ2 = K1x1 −K2x2,

· · ·

ẋn = Kn−1xn−1 −
2Knxn

1 + y2g
, (17)

ẏ = (q + 1)
2Knxn

1 + y2g
− qyau− (1 + δ),

for xi ≥ 0 and y ≥ 0. In order to simplify our analysis,
we assume that K1 = · · · = Kn = K . We normalize all
concentrations such that unperturbed steady states are

y∗ = 1, xi =
1

K
1 ≤ i ≤ n. (18)

A. Hard limit on disturbance attenuation

We extend our results in Theorem 1 to higher dimensional
model of autocatalytic pathways. In the following theorem,
we show that there exists a hard limit on the best achievable
disturbance attenuation of system (17).

Theorem 3: There exists a hard limit on the best achiev-
able disturbance attenuation, γ∗, for system (17) such that
the problem of disturbance attenuation with internal stability
is solvable for all γ > γ∗, but is not solvable for all γ < γ∗,
i.e.,

∫ T

0
(y(t;u0)− ȳ)2dt ≤ γ2

∫ T

0
δ2(t)dt.

Moreover, the hard limit function is given by

γ∗ ≥ H(q,K, g, n) (19)



where

H(q,K, g, n) =
1

g(q + 1)
(

1− ( q
q+1 )

1

n

)

+K
(

( q+1
q

)
1

n − 1
) .

Proof: Due to space limitations, we eliminate the proof.

Remark 4: Theorem 3 illustrates a tradeoff between ro-
bustness and efficiency (as measured by complexity and
metabolic overhead). It follows from (19), the glycolysis
mechanism is more robust efficient if K and g are large.
On the other hand, large K requires either a more efficient
or a higher level of enzymes, and large g requires a more
complex allosterically controlled PK enzyme; both would
increase the cells metabolic load.

Remark 5: It can be easily shown that H(q,K, g, n) ∈
O(n), and it is approximated by

H(q,K, g, n) ≈ −
n

(

ln( q
q+1 )

)(

g(q + 1) +K
) . (20)

This means that as the number of intermediate reactions n
grows, the price paid for robustness, H(q,K, g, n), increases
linearly with n (see Fig. 4).

B. Hard limit on output energy

In this subsection, we show that there exists a hard limit
on the best achievable ideal performance (output energy) of
system (17).

Theorem 4: Suppose that the equilibrium of interest is
given by (18) and u∗ = 1. Then, there is a hard limit on
the performance measure of the unperturbed (δ = 0) system
in the following sense

∫ ∞

0
(y(t;u0)− ȳ)2 dt (21)

≥
λk

(

vT (z(0)− z∗)
)2

(

vTB
)2 + J(z(0), q, g),

where u0 is an arbitrary stabilizing feedback control law for
system (17), J(z∗, q, g) = J(z, q, 0) = 0 and |J(z, q, g)| ≤
c|z − z∗|3 where z is close enough to z∗.

Proof: The proof of this theorem is adjusted from [18],
[17] and Theorem 3.

Remark 6: In the case where n = 1, i.e., with only one
intermediate reaction, the results of Theorems 4 and 3 reduce
to the results of Theorems 2 and 1, respectively.

V. ILLUSTRATIVE NUMERICAL EXAMPLES

In this section, we present numerical examples to demon-
strate the utility of the obtained hard limits.

Example 1: Consider the system (4)-(5) where a = 1, g =
2, q = 2 and k = 5. For 1 < h < 6.5, we can easily show
that the system (4)-(5) is stable [1]. Hence we can define the
L2-gain disturbance attenuation for (4)-(5) as follows

γ2 = sup
t>0

∫ t

0 y
2(τ)dτ

∫ t

0 δ
2(τ)τ

. (22)

The simplest robust performance requirement for (4)-(5) is
that the concentration of y (ATP) remains nearly constant
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γ
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|h−1|q
k+gq

Fig. 2: The solid line shows the L2-gain disturbance atten-
uation of (4)-(5) versus h. The dashed line shows the stable
steady-state error, and the dotted line demonstrates the hard
limit on the best achievable disturbance attenuation. This
hard limit is independent of the feedback control strategy
used to stabilize the system.

when there is a small constant disturbance in ATP consump-
tion δ. But even temporary ATP depletion can result in cell
death. Therefore, the transient response to disturbance plays
an important role. In [1], the steady-state error for linearized
system is computed by 1

|h−a| (dashed red line in Fig. 2).

Therefore, by increasing h the steady-state error becomes
better. One tradeoff is that large h requires complex enzymes,
which are more costly for the cell to produce. A more
interesting tradeoff arises because of the transient response to
disturbance. Fig. 2 illustrates the effect of h on the transient
response to step changes in disturbance. As one can see
in Fig. 2 (solid blue line), by increasing h, the L2-gain
disturbance attenuation of (4)-(5) decreases (i.e., proposed
robustness performance becomes better). After some critical
threshold, although the stable steady-state error becomes
better by increasing h, but the robustness performance γ
does not become better due to the transient response to
disturbance. The dotted line in Fig. 2 shows the hard limit
on the best achievable disturbance attenuation obtained form
(9). This hard limit is independent of the feedback control
strategy used to stabilize the system (Hence, it is independent
of h).

Example 2: Consider the autocatalytic pathway (17)
where u = 2

1+y2h (the regulatory feedback control employed

by nature), g = q = 2, K = 5, a = 1 and δ(t) =
0.1(1 + sin(8t)). Now, for each integer 1 ≤ n ≤ 4,
we calculate the optimal L2-gain disturbance attenuation
(by finding the proper h). In Fig. 3, the optimal L2-gain
disturbance attenuation of the autocatalytic pathways versus
the number of intermediate reactions are depicted. As one
can see in Fig. 3, as the number of intermediate reactions
grows, the price for performance increases. The dashed
line shows the obtained hard limit based on Theorem 3.
Note that, due to the form of regulatory feedback control
which employed by nature, there is a small gap between
obtained hard limit in Theorem 3 and the L2-gain disturbance
attenuation of the original model (the distance between the
small circles and the dashed line in Fig. 3). Furthermore,
Fig. 4 shows that we can approximate γ∗

L = H(q,K, g, n)
precisely (for any large or small n) by using the proposed
linear function in Remark 5. As mentioned earlier, the price
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Fig. 3: The small circles (◦) demonstrate the L2-gain dis-
turbance attenuation of autocatalytic pathways (17), where
u = 2

1+y2h (the regulatory feedback control employed by
nature), versus the number of intermediate reactions. The
dashed line shows the obtained hard limit based on Theorem
3.
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Fig. 4: The small circles (◦) show the obtained hard limit
based on Theorem 3 and the solid line shows the linear
approximation of that hard limit based on Remark 5.

paid for robustness, H(q,K, g, n), increases linearly with the
number of intermediate reactions n.

VI. CONCLUSION

By using blending ideas from biology and nonlinear
control theory, our objective is to develop a methodology
to characterize fundamental limits on robustness and perfor-
mance measures in dynamical networks with autocatalytic
structures. We study the hard limits of the ideal performance
of a glycolysis model. It is shown that glycolysis model can
be used as a basis for such study. Then, we explicitly derive
hard limits on the performance of the autocatalytic pathways
with intermediate reactions which are characterize as L2-
norm of the output and L2-gain of disturbance attenuation.
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