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a b s t r a c t

We study asymptotic stability properties of a class of quasi-polynomial dynamical systems. This class of
nonlinear systems is a special class of interconnected systems arising in several biochemical and biological
system applications and can be represented using quasi-polynomial dynamical systems. It is known that a
special class of such systems can be embedded into a higher dimensional space and cast in Lotka–Volterra
canonical form.We characterize a class of quasi-polynomial dynamical systems with asymptotic stability
properties for all initial conditions in the positive orthant. The key advantage of the proposed method is
that it is algebraic such that asymptotic stability conditions can be derived in terms of (as they are usually
in biological networkmodels) parameters of the system.We apply our results to parameterizedmodels of
three different biological systems: the generalized mass action (GMA) model, an oscillating biochemical
network, and a reduced ordermodel of the glycolysis pathway, and show that one can apply our proposed
method to verify asymptotic stability for each case in terms of underlying parameters.

© 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Recent advances in systems biology have created a new trend
to study network level properties of biological networks. Robust-
ness with respect to changes in various parameters in a biolog-
ical network is one such fundamental characteristic. There is an
abundance of literature on how robustness is involved in various
biological processes and mechanisms as well as living systems (cf.
Kitano (2007) and references therein). Nonetheless, a mathemat-
ical framework to provide a unified perspective on robustness is
sorely missing. Our aim is to provide a framework to study stabil-
ity properties of a class of biological network models in terms of
uncertain network parameters (e.g. the rate constants, etc.).

There has been recent interest in stability analysis of biochem-
ical reaction network models, for instance see Arcak and Sontag
(2006, 2008), Jovanović, Arcak, and Sontag (2008) andMa and Igle-
sias (2002) and references therein. In Ma and Iglesias (2002), two
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different techniques are applied to reason about the robustness of
an oscillatory model. Another method to quantify the robustness
of oscillatory behavior of bio-molecular models to perturbations
is presented in Ghaemi, Sun, Iglesias, and Del Vecchio (2009). The
authors propose a method that is based on Hopf bifurcation and
theRouth–Hurwitz stability criterion. InArcak and Sontag (2008), a
passivity-based stability criterion for a class of interconnected sys-
tems is discussed which extends the earlier work of the authors
on the secant criterion for cyclic systems to a general interconnec-
tion structure (Arcak & Sontag, 2006). Themain result of Arcak and
Sontag (2008) establishes global asymptotic stability of an inter-
connected network from the diagonal stability of the correspond-
ing dissipativity matrix.

In this paper, we consider a special class of quasi-polynomial
dynamical systems that arises in modeling biochemical reaction
networks. This class of nonlinear systems can be represented
using power-law expansions in the variables of the system.
The state variable of the (quasi-polynomial) system represents
one of the variables of the model (metabolite concentrations,
protein concentrations or levels of gene expression) and the
coefficients are stoichiometric coefficients and kinetic orders. The
main difference between quasi-polynomial models and other ODE
models used in biochemical systems is that the kinetic orders
can be non-integer numbers. A kinetic order can have even
negative value when inhibition is modeled. In this way, power-law
models have a higher flexibility to reproduce the nonlinearity of
biochemical systems.
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It is known that a quasi-polynomial system can be transformed
into a Lotka–Volterra system with some appropriate change of
variables in higher dimensions (Hernandez-Bermejoa & Fairen,
1997). The dimension of the corresponding Lotka–Volterra system
depends on the number of different quasi-monomials appearing in
the right-hand side of the equations, which is usually greater than
the number of state variables. Clearly, the resulting interactionma-
trix (∆ in (4)) is singular. We show that stability properties of a
quasi-polynomial system can be studied through its mathemati-
cally equivalent counterpart (namely, the Lotka–Volterra system)
that has much simpler form.

It is known that if the interaction matrix of a Lotka–Volterra
system is diagonally stable, then one can conclude the global
asymptotic stability of the equilibriumof the system in the positive
orthant (Goh, 1977; Kaszkurewicz & Bhaya, 2000). For a singular
interaction matrix, the existing diagonal stability results can only
guarantee the boundedness of the solutions in the positive orthant.
There is also some research that proposes methods to study the
boundedness of solutions based on the existence of a Lyapunov
function associated with a fixed point of a quasi-polynomial
system (Figueiredo, Gléria, & Rocha Filho, 2000; Hernandez-
Bermejo, 2002).

We show how to derive sufficient conditions to guarantee
global asymptotic stability of the equilibria of the corresponding
Lotka–Volterra systems and the quasi-polynomial system in
the positive orthant. These sufficient conditions impose a rank
condition on the matrix of kinetic orders (Σ in (3)) and require a
comparison matrix constructed using the moduli of the entries of
the interaction matrix to be an M-matrix (Horn & Johnson, 1990).
We also provide necessary conditions for asymptotic stability of
the equilibria of the corresponding Lotka–Volterra system. The
main advantage of the proposed stability analysis is that it is
algebraic in the sense that the procedure to embed a quasi-
polynomial dynamical system into a Lotka–Volterra form is an
algebraic procedure.Moreover, in order to verify that amatrix is an
M-matrix one only needs to check whether the leading principal
minors of the matrix are non-negative. This step is also algebraic
and leads to a set of inequalities in terms of the system parameters.
In Section 3, we apply our results to study stability properties of
three parameterized biological network models in terms of their
parameters. We show that one can follow the proposed algebraic
procedures to find the range of parameters for which a given
parameterized model is asymptotically stable.

Notations. We denote the set of real numbers by R. The positive
orthant of Rn is defined as

Rn
++

= {x ∈ Rn
| xi > 0 forall i = 1, . . . , n}. (1)

The set of all matrices ∆ = [δij] for which δii ≥ 0 for all i and
δij ≤ 0 for all i ≠ j are shown by D0. For a given matrix ∆ = [δij],
we define matrixM(∆) = [mij] as follows

mij =


δij if j = i
|δij| if j ≠ i. (2)

Definition 1. A matrix ∆ ∈ D0 is called an M-matrix if all the
leading principal minors of ∆ are non-negative, or equivalently, if
the real part of each nonzero eigenvalue of ∆ is positive.

2. Global stability of quasi-polynomial systems

The primary motivation for our study is biological network
models where most of the biochemical processes can be repre-
sented using power-law expansions in the variables of the system.
In this paper, we consider the following class of quasi-polynomial
dynamical systems:
ẋi = bixi + xi
m
j=1

aij
n

k=1

x
σjk
k (3)

for i = 1, . . . , n. The state variables xi represents one of the n
variables of themodel (metabolite concentrations, protein concen-
trations or levels of gene expression), bi and aij are stoichiometric
coefficients, and σjk are kinetic orders. The principal difference of
quasi-polynomial models with respect to other ODE models used
in biochemical systems is that the kinetic orders canbenon-integer
numbers. A kinetic order can have even negative value when in-
hibition is modeled. In this way, quasi-polynomial models have a
higher flexibility to capture nonlinear behavior of biochemical sys-
tems. For fixed parameters, we denote the trajectory of system (3)
at time instant t with initial condition x0 by x(t; x0).

Let us denote by A = [aij] the n × m interaction matrix, by
Σ = [σij] the m × n matrix of kinetic orders, and by b = [bi] the
n×1 vector of coefficients. For a given set of parameters, we denote
the set of nontrivial equilibria of system (3) by E(A, Σ, b), i.e., the
set of all strictly positive vectors x∗

= (x∗

1, . . . , x
∗
n) for which bi +m

j=1 aij
n

k=1(x
∗

k)
σjk = 0 and for all i = 1, . . . , n. Define nonlinear

map F : Rn
→ Rm componentwise as zj = Fj(x1, . . . , xn) =n

k=1 x
σjk
k for all j = 1, . . . ,m. The projection of the positive

orthantRn
++

under F is denoted byΦ =

z | z = F(x), ∀x ∈ Rn

++


.

The class of quasi-polynomial dynamical systems defined by (3)
can be cast as a (usually with higher dimension) Lotka–Volterra
systemwith the following canonical form (Hernandez-Bermejoa &
Fairen, 1997)

żi = λi zi + zi
m
j=1

δij zj (4)

for i = 1, . . . ,m, where the system matrices are given by ∆ =

[δij] = ΣA and λ = [λi] = Σb. Throughout the paper, we
assume that rank(Σ) = n (Magyar, Szederknyi, & Hangos, 2005).
This assumption implies that dynamical systems (4) with initial
condition z(0) and (3) with initial condition x(0) exhibit the same
dynamical behavior if z(0) = F(x(0)). We denote the trajectory of
system (4) starting at z(0) by z(t; z(0)).

One of the early works on the stability properties of Lotka–
Volterra system (4) was reported in Goh (1977). For a recent
reference on the subject, we refer to Kaszkurewicz and Bhaya
(2000) for a comprehensive discussion. The following theorem
from Goh (1977) gives a sufficient condition for the global stability
of system (4).

Theorem 2. If there exists a constant positive diagonal matrix P =

diag(p1, . . . , pm) > 0 such that

∆TP + P∆ < 0, (5)

then the nontrivial equilibrium z∗
∈ Rm

++
of the Lotka–Volterra

model (4) is globally stable for all z(0) ∈ Rm
++

.

We refer to Goh (1977) for a proof. The existence of a positive
diagonal matrix in Theorem 2 implies that ∆ is non-singular and
that the unique nontrivial equilibrium is asymptotically stable. In
order to handle singular ∆, the sufficient condition in Theorem 2
can be relaxed to the following form

∆TP + P∆ ≤ 0 (6)

for a positive diagonal matrix P . The existence of a solution for
(6) implies the boundedness of the solutions and stability of the
nontrivial equilibriumpoints. It is straightforward to verify that the
following function which is defined on Rm

++
serves as a Lyapunov

candidate for system (4)

V (z) =

m
i=1

pi


zi − z∗

i − z∗

i ln


zi
z∗

i


(7)



N. Motee et al. / Automatica 48 (2012) 2945–2950 2947
in which z∗ is a nontrivial equilibrium of (4) and P = diag
(p1, . . . , pm) > 0 satisfies (5) or (6). We refer to Kaszkurewicz and
Bhaya (2000) for a thorough discussion on diagonal stability and
the related diagonal-type Lyapunov functions.

Let us assume that the number of monomials m is greater than
the number of state variables n in quasi-polynomial system (3).
Thus, one can see that ∆ = ΣA is a singular m × m matrix. By
applying Theorem 2 to system (4), we can only hope to prove the
boundedness of the solutions of (4), and therefore, the solutions of
(3). In the following theorem, we propose sufficient conditions for
asymptotic stability of the set of equilibrium points of (3).

Proposition 3. Suppose that for system (3) matrix ∆ = [δij] is di-
agonally dominant and δii ≤ 0. If for every x(0) ∈ Rn

++
the tra-

jectory of system (3) converges asymptotically to the set of equilibria
E(A, Σ, b), then −M(∆) is an M-matrix.

Proof. Suppose that x(t; x(0)) asymptotically converges to x∗
∈

E(A, Σ, b) and denote z∗
= F(x∗). We consider the corresponding

Lotka–Volterra system (4) with initial condition z(0) = F(x(0)).
The trajectory z(t; z(0)) also converges asymptotically to equi-
librium point z∗. Consider linearization of (4) at z∗. The Jacobian
matrix is given by J = diag(z∗

1 , . . . , z
∗
m)∆. Since the set of equi-

libria E(A, Σ, b) is asymptotically stable for all x(0) ∈ Rn
++

, all
the eigenvalues of J must have non-positive real parts. Therefore,
all the eigenvalues of ∆ must have non-positive real parts. From
our assumption that∆ is diagonally dominant and according to the
Gershgorin circle theorem, the eigenvalues ofM(∆) also belong to
the Gershgorin discs of matrix ∆. Therefore, all the eigenvalues of
−M(∆) must have non-negative real parts. Since −M(∆) ∈ D0,
we can conclude that −M(∆) is anM-matrix. �

Theorem 4. Suppose that E(A, Σ, b) is the set of all nontrivial
equilibria of system (3) inRn

++
and∆ = ΣA is irreducible. Then every

trajectory of the system x(t; x(0)) asymptotically converges to the set
E(A, Σ, b) for all initial conditions x(0) ∈ Rn

++
if −M(∆) is an

M-matrix.

Proof. Consider the corresponding Lotka–Volterra system (7)with
z(0) = F(x(0)) for a given x(0) ∈ Rn

++
. Let us assume that

z∗
= F(x∗) for some x∗

∈ E(A, Σ, b). We show that one can
choose parameters pi > 0 such that the time derivative of (7)
is non-positive along all trajectories z(t; z(0)) of system (4) with
initial condition z(0) = F(x(0)). The time-derivative of (7) along a
trajectory of (4) is given by

V̇ =

m
i=1

pi żi


zi − z∗

i

zi


. (8)

We rewrite (4) in terms of new state variables yi = zi − z∗

i as
żi = zi

m
j=1 δijyj. By plugging this into (8) we get

V̇ =

m
i=1

pi yi
m
j=1

δij yj

=

m
i=1

m
j=1

pi δij yi yj +
m
i=1

qiy2i −

m
i=1

qiy2i . (9)

The assumption that −M(∆) is an M-matrix and irreducible is
equivalent to the fact that there exist positive vectors ν, µ > 0
such that M(∆)ν ≤ 0 and µTM(∆) ≤ 0 (see Poole and Boullion
(1974) for more details), i.e., there exist νi, µi > 0 such that

δii νi +

j≠i

|δij| νj ≤ 0, (10)

µi δii +

j≠i

µj |δji| ≤ 0. (11)
By choosing pi =
2µi
νi

and qi =
2
νi


j≠i µj|δji|, we have

V̇ = 2
m
i=1

m
j≠i

µi

νi
δij yi yj

+

m
i=1


j≠i

µj

νi
|δji| + 2

µi

νi
δii


y2i −

m
i=1


j≠i

µj

νi
|δji|y2i . (12)

From (10) and (11), we have that

µi

ν2
i


δiiνi +


j≠i

|δij|νj


+

1
νi


µiδii +


j≠i

µj|δji|


≤ 0. (13)

Therefore, it follows that
j≠i

µj

νi
|δji| + 2

µi

νi
δii ≤ −


j≠i

µi

ν2
i
νj|δij|. (14)

By applying (14) to (12), we get the following inequality

V̇ ≤ −


i,j
i≠j

µi

νj
|δij|


νj

νi
sgn(δij)yi − yj

2

≤ 0. (15)

If the middle term in inequality (15) is nonzero, then V̇ < 0
which implies asymptotic stability of the equilibrium. According
to LaSalle’s theorem, the Φ-limit set of the system is contained in
the maximal invariant subset of M = {z ∈ Rn

| V̇ (z) ≡ 0}. From
(15), one can see that if V̇ ≡ 0, then yj =

νj
νi
sgn(δij)yi if δij ≠ 0 for

all j ≠ i. By substituting this into (9), we can find the function form
of V̇ as follows

V̇ =

m
i=1


2µi

ν2
i


δiiνi +


j≠i

|δij|νj


y2i . (16)

Let us assume that zi(t) ≢ z∗

i whenever V̇ ≡ 0. From inequalities
(10), we can conclude that V̇ ≡ 0 if and only if δiiνi +


j≠i |δij|νj =

0. This implies that

żi = zi


δiiνi +


j≠i

|δij|νj


yi
νi

= 0. (17)

Hence z(t) must be a constant solution of (4), i.e., an equilibrium
point z∗∗ of (4). Since z(0) ∈ Rm

++
and V̇ ≤ 0 along the trajectory

of the system, this constant solution z∗∗ must be in Rm
++

as well.
Therefore, this constant solution z∗∗ is a nontrivial equilibrium
point of system (4), i.e., z∗∗

∈ {z ∈ Rm
++

λ + ∆z = 0}.
Since rank(Σ) = n, we have that b + Az∗∗

= 0. Therefore,
there is x∗∗

∈ E(A, Σ, b) such that z∗∗
= F(x∗∗). This implies

that the maximal invariant set of system (4) only contains the set
of equilibria E(A, Σ, b) and that x(t; x(0)) for all x(0) ∈ Rn

++

converges asymptotically to E(A, Σ, b). �

Theorem 4 characterizes sufficient conditions for the stability of
the set of equilibria of system (3). The condition that −M(∆) is an
M-matrix is equivalent to the following feasibility condition: there
is a non-negative diagonal matrix D such that

DM(∆) + M(∆)TD ≤ 0. (18)
The sufficient condition provided by Theorem 4 is more conser-
vative than that of Theorem 2. However, it guarantees asymptotic
stability of the set of equilibria. We note that matrix M(∆) is pa-
rameterized in terms of system parameters. The system parame-
ters can be uncertain but with known variability ranges. We refer
the reader to Feron, Boyd, El Ghaoui, and Balakrishnan (1997) and
Kaszkurewicz andBhaya (2000) for an extensive discussion onhow
to check the feasibility and solve linear matrix inequality (18) with
uncertain matrixM(∆).
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3. Application to biological network models

3.1. Generalized Mass Action (GMA) model

We consider stability conditions for the following Generalized
Mass Action model for biochemical reactions (Irving, Voit, &
Savageau, 1991)

ẋ1 = b1x1 − a1x
σ3
1 xσ1

2 (19)

ẋ2 = −b2x2 + a2x
σ1
1 xσ2

3 (20)

ẋ3 = −b3x3 + a3x
σ1
2 . (21)

The state variables xi > 0 are concentrations, parameters σi are
kinetic orders of different processes, and bi, ai > 0 are the reaction
rate constants. This system can be cast as (3) with the following
matrices

b =

 b1
−b2
−b3


, A =


−a1 0 0
0 a2 0
0 0 a3


,

Σ =


σ3 − 1 σ1 0

σ1 −1 σ2
0 σ1 −1


.

(22)

It is straightforward to verify that the equilibrium of the cor-
responding Lotka–Volterra system is given by z∗

1 =
b1
a1

, z∗

2 =

b2
a2

, z∗

3 =
b3
a3
. According to Theorem 4, sufficient conditions for sta-

bility of system (19)–(21) are rank(Σ) = 3 and

− M(∆) =


(σ3 − 1)a1 −|σ1||a2| 0
−|σ1||a1| a2 −|σ2||a3|

0 −|σ1||a2| a3


(23)

is an M-matrix. Thus, one can easily compute all the principal mi-
nors of the above matrix and find the set of parameters for which
system (19)–(21) is globally asymptotically stable in the positive
orthant. Under the assumption that ai > 0, the sufficient condition
that −M(∆) is an M-matrix is equivalent to the parameter space
defined by the following feasible inequalities

σ3 − 1 ≥ 0 (24)

σ3 − 1 − σ 2
1 ≥ 0 (25)

(σ3 − 1)(1 − |σ1σ2|) − σ 2
1 ≥ 0. (26)

It follows that system (19)–(21) is asymptotically stable for σ1 =

0, σ3 = 1, and all σ2 ∈ R.

3.2. Oscillating biochemical network

In our next example, we consider a model of the molecular net-
work underlying 3′, 5′-cyclic adenosine monophosphate (cAMP)
oscillations observed in homogenous populations of Dictyostelium
cells (Laub& Loomis, 1998). The proposedmodel exhibits the spon-
taneous oscillations in cAMP observed during the early develop-
ment ofDictyostelium discoideum. The robustness properties of this
model were studied in Ghaemi et al. (2009) and Ma and Iglesias
(2002). The variations in the enzymatic activities of these proteins
are described by the following autonomous dynamical system

ẋ1 = k1x7 − k2x1x2
ẋ2 = k3x5 − k4x2
ẋ3 = k5x7 − k6x2x3
ẋ4 = k7 − k8x3x4
ẋ5 = k9x1 − k10x4x5
ẋ6 = k11x1 − k12x6
ẋ7 = k13x6 − k14x7

(27)
in which the state variable x = [x1, . . . , x7]T represents the
concentration of the various proteins (Laub & Loomis, 1998).
Since this system has a S-system representation, the equilibrium
can be calculated analytically. The unique equilibrium of the
system in R7

+
in terms of parameters ki can be calculated

analytically (see Ghaemi et al. (2009) for more details). It is
straightforward to see that one can reformulate (27) in the form
of (3) with quasi-monomials x2, x3, x4, x−1

4 , x−1
1 x7, x−1

2 x5, x−1
3 x7,

x1x−1
4 , x1x−1

6 , x6x−1
7 and find the corresponding system matrices

b, A, and Σ . The matrix Σ has full-column rank. Also, the matrix
−M(∆) in which ∆ = ΣA is given by the equation in Box I.

The set of all parameters ki for which −M(∆) is anM-matrix is
defined by the feasible solutions of the following inequalities

k1k3k6k7k8k10 ≤ 0 and k5 ≥ 0. (28)

The dynamical system (27) represents the model of an oscillator
when the values of parameters ki vary within some specific sets
(cf. Laub and Loomis (1998) and Ma and Iglesias (2002)). The set
of parameters defined by inequalities (28) guarantees asymptotic
stability of (27).

3.3. Reduced biological models

In this example, we show that our proposedmethod can also be
applied to a biological network model with fractional terms in the
right hand side. For differential systems arising from generalized
chemical reaction systems, there exists a standard way to perform
the quasi-steady state approximation, provided that the set of
chemical reactions is divided into two parts: the fast ones and the
slow ones. One can obtain a set of algebraic equations by ignoring
the fast dynamics (by setting the time derivative of the fast
dynamics equal to zero). There is a standard procedure by which
one can obtain a reduced model which only contains the slow
dynamics. These reducedmodels usually contain the Hill functions
of the form axα

1+bxβ for some positive real numbers a, b, α, β . In
this example, we consider the nominal regulated autocatalytic
glycolysis model, which is studied in Chandra, Buzi, and Doyle
(2009), as follows

ẋ = −q
Vxq

1 + γ xh
+ (1 + q)k2y − k1 (29)

ẏ =
Vxq

1 + γ xh
− k2y (30)

in which x is the ATP level, y the lumped variable of intermediate
metabolites downstream of the autocatalytic reaction, q captures
the strength of autocatalysis, k2 represents the lumped metabolic
reactions that generate ATP, k1 represents the ATP demand of the
cell, and h is the gain of the inhibition of the enzymes by ATP.
The parameter γ is determined by the enzyme and regulates the
strength of feedback inhibition. The parameter V is related to the
availability of precursors such as F6P. In the following, we show
that by a suitable change of variable, one can cast a nonlinear
system with Hill functions in the form of (3). For example, we
consider the auxiliary variable defined by z =

xy
1+γ xh

. This new
variable does not have a biological interpretation. However, it
helps us to reformulate the glycolysismodel in the following quasi-
polynomial representation

ẋ = x

−qVxq−2y−1z + (q + 1)k2x−1y − k1x−1 (31)

ẏ = y

Vxq−1y−2z − k2


(32)

ż = z(−qVxq−2y−1z + (q + 1)k2x−1y − k1x−1

+ Vxq−1y−2z − k2 + γ qhVxq+h−3y−2z2

− γ h(q + 1)k2x−1z + γ hk1xh−2y−1z). (33)
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−M(∆) =



0 0 0 0 0 −k3 0 0 0 0
−k6 0 0 0 0 0 −k5 0 0 0
0 −k8 0 −k7 0 0 0 0 0 0
0 −k8 0 k7 0 0 0 0 0 0

−k2 0 0 0 k1 0 0 0 0 −k13
0 0 −k10 0 0 k3 0 −k9 0 0

−k6 0 0 0 0 0 k5 0 0 −k13
−k2 −k8 0 −k7 −k1 0 0 0 0 0
−k2 0 0 0 −k1 0 0 0 k11 0
0 0 0 0 0 0 0 0 −k11 k13


.

Box I.
Fig. 1. The ∆ matrix of the nominal regulated autocatalytic glycolysis model.
We can extract the corresponding matrices in the canonical
representation of the system from (31)–(33) and obtain matrix
∆ which is shown in Fig. 1. It is straightforward to verify that
rank(Σ) = 3. Therefore, a sufficient condition for the positive
equilibrium of the system (29)–(30) to be globally asymptotically
stable is for −M(∆) to be anM-matrix. We should emphasize that
the representation (31)–(33) is not unique. Therefore, one may be
able to find a suitable equivalent quasi-polynomial representation
of (29)–(30) that can provide more insight into the stability
properties of the glycolysismodel.Moreover,we should emphasize
that glycolysis model (29)–(30) induces oscillations when its
parameters take values within a specific set. The above analysis
quantifies a range of parameters for which system (29)–(30) is
asymptotically stable.

Remark 5. The above examples show that one can directly apply
our results to derive sufficient (and sometimes necessary, see
Proposition 3) conditions for asymptotic stability of parameterized
models arising in biological networkmodels. The proposedmethod
is easy to apply as one only needs to follow some specific algebraic
procedures to derive the conditions. We should also emphasize
that the resulting inequalities (which specify the asymptotic
stability region) can be conservative, in the sense that the actual
asymptotic stability region can be larger than the one our method
suggests.

4. Conclusion

The primary objective of this paper is to propose a purely
algebraic method to study polynomial dynamical systems arising
in biological network models. To this end, we study stability
properties of a special class of quasi-polynomial system. By
first embedding a quasi-polynomial dynamical system into
a Lotka–Volterra form in higher dimensions, we prove that
under some sufficient conditions the trajectories of a quasi-
polynomial dynamical system can asymptotically converge to the
corresponding set of equilibria. We apply our results to three
different biological network models and show that one can find
the range of parameters for which a given parameterized model
is stable. The future work in this area will focus on developing
multi-parametric optimization techniques to find regions in the
parameter space for which the system is asymptotically stable.
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